24 research outputs found

    The broadcast marketplace : Designing a more efficient local marketplace for goods and services

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 71-74).Today's online marketplaces for goods and services are imperfect. Participants make an initial post expressing their intention to buy or sell an object, but all offers on this post are private. These offers can be seen as expressions of other participants' intentions to buy or sell the same item. What if these offers were as public as the initial post? Would this decrease market friction and enable participants to close transactions more efficiently? What if every post and offer were tagged with a location enabling a real-time proximal picture of supply and demand? In this thesis, we explore a different kind of marketplace, a broadcast marketplace, where a combination of public post, proximal awareness and mobility decrease the friction of information flow and facilitate efficiency. This thesis explores the design, implementation and deployment of a system which enables users to efficiently view, understand and act upon this proximal picture of supply and demand. To test the viability of the broadcast marketplace we deployed Peddl, an implementation of the idea, in the MIT and Cambridge, MA community. Over the course of the trial we collected data on 5,839 unique visitors and 805 registered users, who made 726 posts totaling $234,913 in value. From this data we show that the additional transparency of supply and demand afforded by our design results in increased marketplace activity.Matthew Blackshaw.S.M

    Recompose - Direct and Gestural Interaction with an Actuated Surface

    Get PDF
    We present Recompose, a new system for manipulation of an actuated surface. By collectively utilizing the body as a tool for direct manipulation alongside gestural input for functional manipulation, we show how a user is afforded unprecedented control over an actuated surface. Our invention consists of the actuated surface and the interaction technique utilizing free-hand and touch gestures to manipulate the 3D geometry of the pin array, thus changing the of shape of the virtual object

    Direct and gestural interaction with relief: A 2.5D shape display

    Get PDF
    Actuated shape output provides novel opportunities for experiencing, creating and manipulating 3D content in the physical world. While various shape displays have been proposed, a common approach utilizes an array of linear actuators to form 2.5D surfaces. Through identifying a set of common interactions for viewing and manipulating content on shape displays, we argue why input modalities beyond direct touch are required. The combination of freehand gestures and direct touch provides additional degrees of freedom and resolves input ambiguities, while keeping the locus of interaction on the shape output. To demonstrate the proposed combination of input modalities and explore applications for 2.5D shape displays, two example scenarios are implemented on a prototype system

    Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain

    Get PDF
    Background: Altered intestinal microbiota composition in later life is associated with inflammaging, declining tissue function, and increased susceptibility to age-associated chronic diseases, including neurodegenerative dementias. Here, we tested the hypothesis that manipulating the intestinal microbiota influences the development of major comorbidities associated with aging and, in particular, inflammation affecting the brain and retina. Methods: Using fecal microbiota transplantation, we exchanged the intestinal microbiota of young (3 months), old (18 months), and aged (24 months) mice. Whole metagenomic shotgun sequencing and metabolomics were used to develop a custom analysis workflow, to analyze the changes in gut microbiota composition and metabolic potential. Effects of age and microbiota transfer on the gut barrier, retina, and brain were assessed using protein assays, immunohistology, and behavioral testing. Results: We show that microbiota composition profiles and key species enriched in young or aged mice are successfully transferred by FMT between young and aged mice and that FMT modulates resulting metabolic pathway profiles. The transfer of aged donor microbiota into young mice accelerates age-associated central nervous system (CNS) inflammation, retinal inflammation, and cytokine signaling and promotes loss of key functional protein in the eye, effects which are coincident with increased intestinal barrier permeability. Conversely, these detrimental effects can be reversed by the transfer of young donor microbiota. Conclusions: These findings demonstrate that the aging gut microbiota drives detrimental changes in the gutā€“brain and gutā€“retina axes suggesting that microbial modulation may be of therapeutic benefit in preventing inflammation-related tissue decline in later life. [MediaObject not available: see fulltext.] Graphical abstract: [Figure not available: see fulltext.

    Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain

    Get PDF
    Background: Altered intestinal microbiota composition in later life is associated with inflammaging, declining tissue function, and increased susceptibility to age-associated chronic diseases, including neurodegenerative dementias. Here, we tested the hypothesis that manipulating the intestinal microbiota influences the development of major comorbidities associated with aging and, in particular, inflammation affecting the brain and retina. Methods: Using fecal microbiota transplantation, we exchanged the intestinal microbiota of young (3 months), old (18 months), and aged (24 months) mice. Whole metagenomic shotgun sequencing and metabolomics were used to develop a custom analysis workflow, to analyze the changes in gut microbiota composition and metabolic potential. Effects of age and microbiota transfer on the gut barrier, retina, and brain were assessed using protein assays, immunohistology, and behavioral testing. Results: We show that microbiota composition profiles and key species enriched in young or aged mice are successfully transferred by FMT between young and aged mice and that FMT modulates resulting metabolic pathway profiles. The transfer of aged donor microbiota into young mice accelerates age-associated central nervous system (CNS) inflammation, retinal inflammation, and cytokine signaling and promotes loss of key functional protein in the eye, effects which are coincident with increased intestinal barrier permeability. Conversely, these detrimental effects can be reversed by the transfer of young donor microbiota. Conclusions: These findings demonstrate that the aging gut microbiota drives detrimental changes in the gutā€“brain and gutā€“retina axes suggesting that microbial modulation may be of therapeutic benefit in preventing inflammation-related tissue decline in later life

    The novel mouse Polo-like kinase 5 responds to DNA damage and localizes in the nucleolus

    Get PDF
    Polo-like kinases (Plk1-4) are emerging as an important class of proteins involved in many aspects of cell cycle regulation and response to DNA damage. Here, we report the cloning of a fifth member of the polo-like kinase family named Plk5. DNA and protein sequence analyses show that Plk5 shares more similarities with Plk2 and Plk3 than with Plk1 and Plk4. Consistent with this observation, we show that mouse Plk5 is a DNA damage inducible gene. Mouse Plk5 protein localizes predominantly to the nucleolus, and deletion of a putative nucleolus localization signal (NoLS) within its N-terminal moiety disrupts its nucleolar localization. Ectopic expression of Plk5 leads to cell cycle arrest in G1, decreased DNA synthesis, and to apoptosis, a characteristic it shares with Plk3. Interestingly, in contrast to mouse Plk5 gene, the sequence of human Plk5 contains a stop codon that produces a truncated protein lacking part of the kinase domain

    T(ether): spatially-aware handhelds, gestures and proprioception for multi-user 3D modeling and animation

    No full text
    T(ether) is a spatially-aware display system for multi-user, collaborative manipulation and animation of virtual 3D objects. The handheld display acts as a window into virtual reality, providing users with a perspective view of 3D data. T(ether) tracks users' heads, hands, fingers and pinching, in addition to a handheld touch screen, to enable rich interaction with the virtual scene. We introduce gestural interaction techniques that exploit proprioception to adapt the UI based on the hand's position above, behind or on the surface of the display. These spatial interactions use a tangible frame of reference to help users manipulate and animate the model in addition to controlling environment properties. We report on initial user observations from an experiment for 3D modeling, which indicate T(ether)'s potential for embodied viewport control and 3D modeling interactions
    corecore